Evidence for Breast Cancer Promotion

(Melatonin Studies in Cells and Animals)

CL Sage, MA, Sage Associates,
Santa Barbara, CA USA

Prepared for the BioInitiative Working Group
July 2007
TABLE OF CONTENTS

I. Introduction

II. Melatonin and ELF-EMF

III. Tamoxifen and ELF-EMF

IV. Animal Studies and ELF-EMF

V. Epidemiological Studies on Breast Cancer and ELF-EMF
 Female Breast Cancer Studies

VI. Male Breast Cancer Studies

VII. Conclusions
Introduction

The subject of breast cancer and studies of melatonin has a long and rich history replete with destroyed scientific reputations and career-ending charges of misconduct of scientists who have contributed stellar scientific work that has proved extremely inconvenient for governmental agencies and military and industrial interests (Liburdy). References are given in each section below to facilitate locating the pertinent references for each section.

II. Melatonin and ELF-EMF

Evidence which supports a possible mechanism for ELF-EMF and breast cancer is the consistent finding (in five separate labs) that environmental levels of ELF-EMF can act at the cellular level to enhance breast cancer proliferation by blocking melatonin’s natural oncostatic action in MCF-7 cells (Liburdy, 1993; Luben et al, 1996; Morris et al, 1998; Blackman et al, 2001; Ishido, et al, 2001). ELF-EMF levels between 0.6 and 1.2 µT have been shown to consistently block the protective effects of melatonin.

The series of papers reporting increased breast cancer cell proliferation when ELF-EMF at environmental levels negatively affects the oncostatic actions of melatonin in MCF-7 cells should warrant new public exposure guidelines or planning target limits for the public, and for various susceptible segments of the population.

References

Ishido et al, 2001. Magnetic fields (MF) of 50 Hz at 1.2 µT as well as 100 µT cause uncoupling of inhibitory pathways of adenylyl cyclase mediated by melatonin 1a receptor in MF-sensitive MCF-7 cells.

III. Tamoxifen and ELF-EMF

Girgert et al (2005) reported that “the anti-estrogenic activity of tamoxifen is reduced in two subclones of MCF-7 cells under the influence of ELF/EMF to different extent. Dose-response curves of the growth-inhibitory effect of tamoxifen are shifted towards higher concentrations leading to a reduced growth inhibition at a given concentration. Our observations confirm results from a previous report describing a reduced inhibitory effect of tamoxifen at 10^{-7} M from 40% to only 17% by exposure to an EMF of 1.2 μT” (Harland et al, 1997). Further, Girgert et al conclude that “From a medical point of view, it is disturbing that maximal induction of cell proliferation by tamoxifen at a field strength of 1.2 μT is observed at concentration of 10^{-6} M. This is exactly the serum concentration achieved in BC patients under standard oral therapy.” (De Cupis et al, 1997).

The Girgert et al paper confirms prior findings that environmental level ELF-EMF inhibits the antiproliferative action of tamoxifen in MCF-7 human breast cancer cells. Four other papers reporting this effect include Liburdy et al, 1997; Harland et al, 1997; Harland et al, 1999; and Blackman et al, 2001).

References

IV. Animal Studies and ELF-EMF

Thun-Battersby, S., M. Mevissen, et al. (1999). Exposure of Sprague-Dawley rats to a 50 Hz, 100 uTesla magnetic field for 27 weeks facilitates mammary tumorigenesis in the

V. Epidemiological Studies on Breast Cancer and ELF-EMF Female Breast Cancer Studies

References

VI. Male Breast Cancer Studies

References

VII. Conclusions

Conclusion: The constellation of relevant scientific papers providing mutually-reinforcing evidence for an association between power-frequency electromagnetic fields (ELF-EMF) and breast cancer is strongly supported in the scientific literature.

Conclusion: ELF at environmental levels negatively affects the oncostatic effects of both melatonin and tamoxifen on human breast cancer cells. Numerous epidemiological studies over the last two decades have reported increased risk of male and female breast cancer with exposures to residential and occupational levels of ELF. Animal studies have reported increased mammary tumor size and incidence in association with ELF exposure.

Conclusion: ELF limits for public exposure should be revised to reflect increased risk of breast cancer at environmental levels possibly as low as 2 mG or 3 mG; certainly as low as 4 mG.